10.2 Calculus with Parametric Curves

In this section we will use parametric equations to solve problems involving tangents, area, arc length and surface areas.

- Tangents:

Since parametric equations express a relationship between the variables \mathbf{x} and \mathbf{y}, it makes sense to ask about the derivative, $\frac{d y}{d x}$, at a certain point on the parametric curve.

If we know how to compute $\frac{d y}{d x}$, it can be used to determine slopes of lines tangent to the parametric curves.

Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve $x=f(t), y=g(t)$, where y is also a differentiable function of x. Then the chain rule gives:

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

If $\frac{d x}{d t} \neq 0$, we can solve for $\frac{d y}{d x}$. Using algebra, we can rewrite the above equation as

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \frac{d x}{d t} \neq
$$

In other words,

$$
\frac{d y}{d x}=\frac{g^{\prime}(t)}{f^{\prime}(t)} \text { if } f^{\prime}(t) \neq 0
$$

Example: Find $\frac{d y}{d x}$ for the following curves. Interpret the result and determine the points (if any) at which the curve has a horizontal or vertical tangent line.

$$
\begin{gathered}
\text { a) } x=f(t)=t, \quad y=g(t)=2 \sqrt{t}, \quad \text { for } t \geq 0 \\
\frac{d y}{d x}=\frac{g^{\prime}(t)}{f^{\prime}(t)}=\frac{\frac{1}{\sqrt{t}}}{1}=\frac{\mathbf{1}}{\sqrt{\boldsymbol{t}}}, \text { provided } \boldsymbol{t} \neq \mathbf{0}
\end{gathered}
$$

- Notice that $\frac{d y}{d x}$ cannot equal 0 for $\mathbf{t}>0$. Therefore, the curve has no horizontal tangent lines.
- Also, as $\boldsymbol{t} \rightarrow \mathbf{0}^{+}, \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}} \rightarrow \infty$ which means that the curve has a vertical tangent line at $(0,0)$.
- If we eliminate t from the parametric equations we get $\boldsymbol{y}=2 \sqrt{x}$. See the graph below

- Now if we want to find the slopes of tangent lines at other points on the curve, we simply substitute the corresponding values of t. For example, the point $(1,2)$ corresponds to $t=1$ and the slope of the tangent line at that point is $\frac{1}{\sqrt{1}}=1$.

$$
\begin{aligned}
& \text { b) } x=f(t)=4 \cos (t), \quad y=g(t)=16 \sin (t) \text { for } 0 \leq t \leq 2 \pi \\
& \frac{d y}{d x}=\frac{g^{\prime}(t)}{f^{\prime}(t)}=\frac{16 \cos (t)}{-4 \sin (t)}=-4 \cot (t)
\end{aligned}
$$

- At $t=0, \pi, 2 \pi, \cot (t)$ is undefined. Notice that

$$
\lim _{t \rightarrow 0+} \frac{d y}{d x}=\lim _{t \rightarrow 0+}(-4 \cot (t))=-\infty \quad \text { and } \lim _{t \rightarrow 0-} \frac{d y}{d x}=\lim _{t \rightarrow 0-}(-4 \cot (t))=\infty
$$

Therefore, a vertical tangent line occurs at points corresponding to $t=0, \pi$.

$$
\text { When } t=0 \quad \text { When } t=\pi
$$

$x=4 \cos (0)=4$
$(4,0)$
$\mathrm{y}=16 \sin (0)=0$

- At $t=\frac{\pi}{2}, \frac{3 \pi}{2}, \cot (t)=0$. Therefore, a horizontal tangent line occurs at points corresponding to $t=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$.

When $t=\frac{\pi}{2}$
$\mathrm{x}=4 \cos \left(\frac{\pi}{2}\right)=0$
$(0,16)$
$y=16 \sin \left(\frac{\pi}{2}\right)=16$

When $t=\frac{3 \pi}{2}$
$x=4 \cos \left(\frac{3 \pi}{2}\right)=0$

$y=16 \sin \left(\frac{3 \pi}{2}\right)=-16 \longrightarrow$

- Just like the last example, slopes of tangent lines at other points on the curve are found by substituting their corresponding values of t.
- Eliminating the variable \mathbf{t}, we get:

$$
\frac{x^{2}}{16}+\frac{y^{2}}{256}=1
$$

... which is an ellipse. See the graph at the right.

- Areas

We know that the area under the curve $\mathbf{y}=\mathrm{f}(\mathbf{x})$ from $[\mathrm{a}, \mathrm{b}]$ is $A=\int_{a}^{b} f(x) d x$, where $f(x) \geq 0$. If the curve is traced out once by the parametric equations $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, then we can calculate an area formula by using the substitution rule for definite integrals.

$$
A=\int_{a}^{b} y d x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t \quad \text { or }\left[\int_{\beta}^{\alpha} g(t) f^{\prime}(t) d t\right]
$$

Example: Find the area under the curve when $x=f(t)=4 \cos (t), y=g(t)=16 \sin (t)$, for $0<t<\pi$ Using the substitution rule: $g(t)=16 \sin (t), \quad f^{\prime}(t)=-4 \sin (t) \quad \frac{1-\cos (2 t)}{2}$

$$
\begin{aligned}
& A=\int_{0}^{\pi} 16 \sin (t) \cdot-4 \sin (t) d t=-64 \int_{0}^{\pi} \sin ^{2}(t) d t=-\frac{64}{2} \int_{0}^{\pi}(1-\cos (2 t)) d t \\
& =-32\left[t-\frac{1}{2} \sin (2 t)\right]_{0}^{\pi}=-32\left[\left(\pi-\frac{1}{2} \sin (2 \pi)\right)-\left(0-\frac{1}{2} \sin (0)\right)\right]=-32 \pi
\end{aligned}
$$

Since we know that the area is above the \mathbf{x} - axis, therefore the area is 32π. This is a case where we would reverse the $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$

$$
A=-\int_{\pi}^{0} 16 \sin (t) \cdot-4 \sin (t) d t=-(-32) \int_{\pi}^{0} 1-\cos (2 t) d t \cdots 32 \pi
$$

- Arc Length

From previous sections, we have that the arc length L of a curve C from $[a, b]$, assuming $y=f(x)$ and $f^{\prime}(x)$ is continuous, is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

If the curve \mathbf{C} can be described by parametric equations $\mathbf{x}=\mathrm{f}(\mathrm{t})$ and $\mathbf{y}=\mathrm{g}(\mathrm{t}), \boldsymbol{\alpha}<\mathrm{t}<\boldsymbol{\beta}$, where $\frac{d x}{d t}=f^{\prime}(t)>0$. Using the formula above, we obtain:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{\alpha}^{\beta} \sqrt{1+\left(\frac{d y / d t}{d x / d t}\right)^{2}} \frac{d x}{d t} d t
$$

Since $\frac{d x}{d t}>0$

$$
\begin{gathered}
L=\int_{\alpha}^{\beta} \sqrt{1+\frac{\left(\frac{d y}{d t}\right)^{2}}{\left(\frac{d x}{d t}\right)^{2}} \frac{d x}{d t} d t=\int_{\alpha}^{\beta} \sqrt{\frac{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}{\left(\frac{d x}{d t}\right)^{2}}} \frac{d x}{d t} d t=\int_{\alpha}^{\beta} \frac{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}}{\sqrt{\left(\frac{d x}{d t}\right)^{2}}} \frac{d x}{d t} d t} \\
=\int_{\alpha}^{\beta} \frac{1}{\frac{d x}{d t}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \frac{d x}{d t} d t=\int_{\alpha}^{\beta} \sqrt{\left(\frac{\boldsymbol{d} \boldsymbol{x}}{\boldsymbol{d} t}\right)^{2}+\left(\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} t}\right)^{2}} \boldsymbol{d t}
\end{gathered}
$$

If $\mathbf{x}=\mathrm{f}(\mathrm{t})$ and $\mathbf{y}=\mathrm{g}(\mathrm{t})$ then $\frac{d x}{d t}=f^{\prime}(t)$ and $\frac{d y}{d t}=g^{\prime}(t)$ then we can say the arc length is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\boldsymbol{f}^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t
$$

Theorem: If a curve C is described by the parametric equations $\mathrm{x}=\mathrm{f}(\mathrm{t})$ and $\mathrm{y}=\mathrm{g}(\mathrm{t}), \boldsymbol{\alpha} \leq \boldsymbol{t} \leq \boldsymbol{\beta}$, where f^{\prime} and g^{\prime} are continuous on $[\mathrm{a}, \mathrm{b}]$, and C is traversed exactly once as t increases from $\boldsymbol{\alpha}$ to $\boldsymbol{\beta}$, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example: Find the exact length of the curve. $x=1+3 t^{2}, y=4+2 t^{3}, 0 \leq t \leq 1$

$$
\begin{gathered}
\frac{d x}{d t}=6 t, \quad \frac{d y}{d t}=6 t^{2} \\
L=\int_{0}^{1} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} d t=\int_{0}^{1} \sqrt{36 t^{2}+36 t^{4}} d t=\int_{0}^{1} \sqrt{36 t^{2}\left(1+t^{2}\right)} d t=6 \int_{0}^{1} \sqrt{1+t^{2}} \cdot t d t
\end{gathered}
$$

Using \mathbf{u} - substitution, let $\mathbf{u}=1+t^{2}$ then $\mathbf{d u}=2 t d t \rightarrow \frac{1}{2} \mathrm{~d} \mathbf{u}=t d t$ when $\mathrm{t}=0 \rightarrow \mathbf{u}=1$, when $\mathrm{t}=1 \rightarrow \mathbf{u}=2$

$$
L=6 \int_{1}^{2} \sqrt{u} \frac{1}{2} d u=3 \int_{1}^{2} u^{\frac{1}{2}} d u=3\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{1}^{2}=3 \cdot \frac{2}{3}\left[2^{\frac{3}{2}}-1^{\frac{3}{2}}\right]=2[2 \sqrt{2}-1]=4 \sqrt{2}-\mathbf{2}
$$

- Surface Area

The surface area equation is given by:

$$
S=\int_{\alpha}^{\beta} 2 \pi \cdot y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Assuming that \mathbf{x} and \mathbf{y} represent parametric equations and the curve is rotated about the $\mathrm{x}-$ axis.
Example: Find the exact area of the surface area generated by rotating the given curve about the $\mathrm{x}-$ axis.

$$
\begin{gathered}
x=t^{3}, \quad y=t^{2}, \quad 0 \leq t \leq 1 \\
S=\int_{0}^{1} 2 \pi \cdot t^{2} \sqrt{\left(3 t^{2}\right)^{2}+(2 t)^{2}} d t=2 \pi \int_{0}^{1} t^{2} \sqrt{9 t^{4}+4 t^{2}} d t=2 \pi \int_{0}^{1} t^{2} \sqrt{t^{2}\left(9 t^{2}+4\right)} d t \\
=2 \pi \int_{0}^{1} t^{2} \cdot t \sqrt{9 t^{2}+4} d t
\end{gathered}
$$

(Let $\mathbf{u}=9 t^{2}+4$ and $t^{2}=\frac{u-4}{9} \mathrm{du}=18 t d t \rightarrow \frac{1}{18} \boldsymbol{d} \boldsymbol{u}=t d t$ when $\mathrm{t}=0 \rightarrow \mathrm{u}=4$, when $\mathrm{t}=1 \rightarrow \mathrm{u}=13$

$$
\begin{gathered}
=2 \pi \int_{4}^{13}\left(\frac{u-4}{9}\right) \sqrt{u} \cdot \frac{1}{18} d u=\frac{2 \pi}{18 \cdot 9} \int_{4}^{13}(u-4) \sqrt{u} d u=\frac{\pi}{81} \int_{4}^{13}\left(u^{\frac{3}{2}}-4 u^{\frac{1}{2}}\right) d u \\
=\frac{\pi}{81}\left[\frac{2}{5} u^{\frac{5}{2}}-\frac{8}{3} u^{\frac{3}{2}}\right]_{4}^{13}=\cdots(\text { lots of algebra })=\frac{\boldsymbol{\pi}}{\mathbf{1 2 1 5}}(\mathbf{4 9 4} \sqrt{\mathbf{1 3}}+\mathbf{1 2 8})
\end{gathered}
$$

Example: Find the surface area generated by rotating the given curve about the y - axis.

$$
\begin{gathered}
x=e^{t}-t, \quad y=4 e^{\frac{t}{2}}, \quad 0 \leq t \leq 1 \\
\frac{d x}{d t}=e^{t}-1, \quad \frac{d y}{d t}=2 e^{\frac{t}{2}}
\end{gathered}
$$

Since we are rotating about the \mathbf{y} - axis the surface area formula is: (because the \mathbf{x} function is now the radius)

$$
\begin{aligned}
& \boldsymbol{S}=\int_{\boldsymbol{\alpha}}^{\boldsymbol{\beta}} 2 \boldsymbol{\pi} \cdot \boldsymbol{x} \sqrt{\left(\frac{\boldsymbol{d} \boldsymbol{x}}{\boldsymbol{d} \boldsymbol{t}}\right)^{2}+\left(\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{t}}\right)^{2}} \boldsymbol{d} \boldsymbol{t} \\
& S=\int_{0}^{1} 2 \pi\left(e^{t}-t\right) \sqrt{\left(e^{t}-1\right)^{2}+\left(2 e^{\frac{t}{2}}\right)^{2}} d t \quad \text { (simplify under the radical) } \\
&=2 \pi \int_{0}^{1}\left(e^{t}-t\right) \sqrt{e^{2 t}-2 e^{t}+1+4 e^{t}} d t=2 \pi \int_{0}^{1}\left(e^{t}-t\right) \sqrt{\left(e^{2 t}+2 e^{t}+1\right)} d t \\
&=2 \pi \int_{0}^{1}\left(e^{t}-t\right) \sqrt{\left(e^{t}+1\right)^{2}} d t=2 \pi \int_{0}^{1}\left(e^{t}-t\right)\left(e^{t}+1\right) d t=2 \pi \int_{0}^{1}\left(e^{2 t}+e^{t}-t e^{t}-t\right) d t
\end{aligned}
$$

Now integrate each term. First term use \mathbf{u} - substitution, the third term use integration by parts.

$$
\begin{aligned}
& =2 \pi\left[\frac{1}{2} e^{2 t}+e^{t}-(t-1) e^{t}-\frac{1}{2} t^{2}\right]_{0}^{1} \\
\boldsymbol{S} & =\boldsymbol{\pi}\left(\boldsymbol{e}^{2}+\mathbf{2} \boldsymbol{e}-\mathbf{6}\right)
\end{aligned}
$$

