
10.2   Calculus with Parametric Curves 

 
In this section we will use parametric equations to solve problems involving tangents, area, arc length and 

surface areas. 

 Tangents: 

Since parametric equations express a relationship between the variables x and y, it makes sense to ask about 

the derivative, 
𝑑𝑦

𝑑𝑥
, at a certain point on the parametric curve. 

 

If we know how to compute 
𝑑𝑦

𝑑𝑥
, it can be used to determine slopes of lines tangent to the parametric curves. 

 

Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric 

curve x = f(t), y = g(t), where y is also a differentiable function of x.  Then the chain rule gives: 
𝑑𝑦

𝑑𝑡
=
𝑑𝑦

𝑑𝑥
∙
𝑑𝑥

𝑑𝑡
 

If 
𝑑𝑥

𝑑𝑡
 ≠ 0, we can solve for 

𝑑𝑦

𝑑𝑥
.  Using algebra, we can rewrite the above equation as 

𝒅𝒚

𝒅𝒙
=

𝒅𝒚
𝒅𝒕
𝒅𝒙
𝒅𝒕

    𝒊𝒇 
𝒅𝒙

𝒅𝒕
≠ 𝟎 

 

In other words,  

𝒅𝒚

𝒅𝒙
=
𝒈′(𝒕)

𝒇′(𝒕)
   𝒊𝒇 𝒇′(𝒕) ≠ 𝟎 

 

Example:  Find  
𝑑𝑦

𝑑𝑥
 for the following curves.  Interpret the result and determine the points (if any) at which 

the curve has a horizontal or vertical tangent line. 

𝑎) 𝑥 = 𝑓(𝑡) = 𝑡,   𝑦 = 𝑔(𝑡) = 2√𝑡, 𝑓𝑜𝑟 𝑡 ≥ 0 

𝑑𝑦

𝑑𝑥
=
𝑔′(𝑡)

𝑓′(𝑡)
=

1

√𝑡
1
=
𝟏

√𝒕
, 𝒑𝒓𝒐𝒗𝒊𝒅𝒆𝒅 𝒕 ≠ 𝟎 

 Notice that 
𝑑𝑦

𝑑𝑥
 cannot equal 0 for t > 0.  Therefore, the curve  has no horizontal tangent lines. 

 Also, as 𝒕 → 𝟎+, 
𝒅𝒚

𝒅𝒙
→ ∞ which means that the curve has a vertical tangent line at (0, 0).   

 If we eliminate t from the parametric equations we get 𝒚 = 𝟐√𝒙.  See the graph below 

 



 Now if we want to find the slopes of tangent lines at other points on the curve, we simply 

substitute the corresponding values of t.  For example, the point (1, 2) corresponds to  t = 1 and 

the slope of the tangent line at that point is 
1

√1
= 1. 

𝑏)  𝑥 = 𝑓(𝑡) = 4 cos(𝑡),    𝑦 = 𝑔(𝑡) = 16 sin(𝑡)   𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 2𝜋 

𝑑𝑦

𝑑𝑥
=
𝑔′(𝑡)

𝑓′(𝑡)
=
16 cos(𝑡)

−4 sin(𝑡)
= −4 cot(𝑡) 

 At 𝑡 = 0, 𝜋, 2𝜋, cot(𝑡) is undefined.  Notice that  

lim
𝑡→0+

𝑑𝑦

𝑑𝑥
= lim

𝑡→0+
(−4 cot(𝑡)) = −∞    𝑎𝑛𝑑  lim

𝑡→0−

𝑑𝑦

𝑑𝑥
= lim

𝑡→0−
(−4 cot(𝑡)) = ∞  

Therefore, a vertical tangent line occurs at points corresponding to t = 0, π.   

When t = 0       When t = π 

x = 4cos(0) = 4       x = 4cos(π) = -4 

   (4, 0)         (-4, 0) 

y = 16sin(0) = 0       y = 16sin(π) = 0 

 

 At 𝑡 =
𝜋

2
,
3𝜋

2
, cot(𝑡) = 0.  Therefore, a horizontal tangent line occurs at points corresponding to  

𝑡 =
𝜋

2
 𝑎𝑛𝑑 

3𝜋

2
. 

When 𝒕 =
𝝅

𝟐
       When 𝒕 =

𝟑𝝅

𝟐
   

x = 4cos(
𝝅

𝟐
) = 0       x = 4cos(

𝟑𝝅

𝟐
) = 0 

   (0, 16)          (0, -16) 

y = 16sin(
𝝅

𝟐
) = 16       y = 16sin(

𝟑𝝅

𝟐
) = -16  

 

 Just like the last example, slopes of tangent lines at other points on the curve are found by 

substituting their corresponding values of t.    

 Eliminating the variable t, we get: 

𝒙𝟐

𝟏𝟔
+

𝒚𝟐

𝟐𝟓𝟔
= 𝟏 

 … which is an ellipse.  See the graph at the right. 

               

               

               

               

               

               

 
 

 



 Areas 

 

We know that the area under the curve y = f(x) from [a, b] is 𝐴 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
,  where 𝑓(𝑥) ≥ 0.  If the 

curve is traced out once by the parametric equations x = f(t) and y = g(t),  𝜶 ≤ 𝒕 ≤ 𝜷, then we can 

calculate an area formula by using the substitution rule for definite integrals. 

𝑨 = ∫𝒚 𝒅𝒙 =   ∫𝒈(𝒕)𝒇′(𝒕)𝒅𝒕    𝒐𝒓 [∫𝒈(𝒕)𝒇′(𝒕)𝒅𝒕

𝜶

𝜷

]

𝜷

𝜶

𝒃

𝒂

 

Example:  Find the area under the curve when 𝑥 = 𝑓(𝑡) = 4 cos(𝑡), 𝑦 = 𝑔(𝑡) = 16 sin(𝑡), 𝑓𝑜𝑟 0 < 𝑡 < 𝜋 

Using the substitution rule:  𝑔(𝑡) = 16 sin(𝑡),    𝑓′(𝑡) = −4 sin(𝑡)  
1−cos(2𝑡)

2
 

 

𝐴 = ∫16 sin(𝑡) ∙ −4 sin(𝑡)𝑑𝑡 =  −64∫ 𝑠𝑖𝑛2(𝑡)𝑑𝑡

𝜋

0

𝜋

0

= −
64

2
∫(1 − cos(2𝑡))

𝜋

0

𝑑𝑡 

= −32 [𝑡 −
1

2
sin(2𝑡)]

0

𝜋

= −32 [(𝜋 −
1

2
sin(2𝜋)) − (0 −

1

2
sin(0))] =  −𝟑𝟐𝝅 

Since we know that the area is above the x – axis, therefore the area is 32π.  This is a case where we 

would reverse the 𝛂 and 𝛃  

𝐴 = −∫16 sin(𝑡) ∙ −4 sin(𝑡) 𝑑𝑡 =  −(−32)

0

𝜋

∫1 − cos(2𝑡)𝑑𝑡 ⋯𝟑𝟐𝝅

0

𝜋

 

 Arc Length 

 

From previous sections, we have that the arc length L of a curve C from [a, b], assuming y = f(x) and f ‘(x) 

is continuous, is 

𝑳 = ∫√𝟏 + (
𝒅𝒚

𝒅𝒙
)
𝟐

𝒃

𝒂

 𝒅𝒙 

If the curve C can be described by parametric equations x = f(t) and y = g(t), 𝛂 < t < 𝛃,  where  

𝑑𝑥

𝑑𝑡
= 𝑓′(𝑡) > 0.  Using the formula above, we obtain: 

𝑳 = ∫√𝟏 + (
𝒅𝒚

𝒅𝒙
)
𝟐

𝒃

𝒂

 𝒅𝒙 =  ∫

√
  
  
  
  
  

𝟏+

(

 
 

𝒅𝒚
𝒅𝒕
⁄

𝒅𝒙
𝒅𝒕⁄

)

 
 

𝟐

𝜷

𝜶

𝒅𝒙

𝒅𝒕
 𝒅𝒕 

 



Since 
𝑑𝑥

𝑑𝑡
 > 0 

𝐿 = ∫√1 +
(
𝑑𝑦
𝑑𝑡
)
2

(
𝑑𝑥
𝑑𝑡)

2

𝑑𝑥

𝑑𝑡
𝑑𝑡

𝛽

𝛼

= ∫√
(
𝑑𝑥
𝑑𝑡
)
2

+ (
𝑑𝑦
𝑑𝑡
)
2

(
𝑑𝑥
𝑑𝑡)

2  
𝑑𝑥

𝑑𝑡
 𝑑𝑡

𝛽

𝛼

= ∫

√(
𝑑𝑥
𝑑𝑡)

2

+ (
𝑑𝑦
𝑑𝑡
)
2

√(
𝑑𝑥
𝑑𝑡)

2

𝛽

𝛼

 
𝑑𝑥

𝑑𝑡
𝑑𝑡 

= ∫
1

𝑑𝑥
𝑑𝑡

𝛽

𝛼

√(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

 
𝑑𝑥

𝑑𝑡
 𝑑𝑡 =  ∫√(

𝒅𝒙

𝒅𝒕
)
𝟐

+ (
𝒅𝒚

𝒅𝒕
)
𝟐

𝜷

𝜶

𝒅𝒕 

 

If x = f(t) and y = g(t) then 
𝑑𝑥

𝑑𝑡
= 𝑓′(𝑡) 𝑎𝑛𝑑 

𝑑𝑦

𝑑𝑡
= 𝑔′(𝑡)  then we can say the arc length is 

 

𝑳 = ∫√(𝒇′(𝒕))𝟐 + (𝒈′(𝒕))𝟐

𝜷

𝜶

 𝒅𝒕 

Theorem:  If a curve C is described by the parametric equations x = f(t) and y = g(t),  𝜶 ≤ 𝒕 ≤ 𝜷, where 𝑓′ 

and 𝑔′ are continuous on [a, b], and C is traversed exactly once as t increases from 𝛂 to 𝛃, then the length of 

C is 

𝑳 = ∫√(
𝒅𝒙

𝒅𝒕
)
𝟐

+ (
𝒅𝒚

𝒅𝒕
)
𝟐

𝜷

𝜶

𝒅𝒕 

Example:  Find the exact length of the curve.  𝑥 = 1 + 3𝑡2, 𝑦 = 4 + 2𝑡3, 0 ≤ 𝑡 ≤ 1 

𝑑𝑥

𝑑𝑡
= 6𝑡,    

𝑑𝑦

𝑑𝑡
= 6𝑡2 

𝐿 = ∫√(6𝑡)2 + (6𝑡2)2𝑑𝑡

1

0

= ∫√36𝑡2 + 36𝑡4𝑑𝑡 =  ∫√36𝑡2(1 + 𝑡2) 𝑑𝑡 =  6∫√1 + 𝑡2 ∙ 𝑡𝑑𝑡

1

0

1

0

1

0

 

Using u – substitution, let u = 1+𝑡2 then du = 2𝑡𝑑𝑡 → 
1

2
du = 𝑡𝑑𝑡  when t = 0 → u = 1, when t = 1→ u = 2 

𝐿 = 6∫√𝑢 
1

2
𝑑𝑢

2

1

= 3∫𝑢
1
2𝑑𝑢

2

1

= 3 [
2

3
𝑢
3
2]
1

2

= 3 ∙
2

3
[2

3
2 − 1

3
2]  = 2[2√2 − 1]  =   𝟒√𝟐 − 𝟐 

 

 Surface Area 

The surface area equation is given by: 

𝑺 = ∫𝟐𝝅 ∙ 𝒚

𝜷

𝜶

√(
𝒅𝒙

𝒅𝒕
)
𝟐

+ (
𝒅𝒚

𝒅𝒕
)
𝟐

 𝒅𝒕 



Assuming that x and y represent parametric equations and the curve is rotated about the x – axis. 

Example:  Find the exact area of the surface area generated by rotating the given curve about the x – axis. 

𝑥 = 𝑡3, 𝑦 = 𝑡2, 0 ≤ 𝑡 ≤ 1 

𝑆 = ∫2𝜋 ∙ 𝑡2
1

0

√(3𝑡2)2 + (2𝑡)2𝑑𝑡 = 2𝜋∫𝑡2√9𝑡4 + 4𝑡2 𝑑𝑡 = 2𝜋∫𝑡2√𝑡2(9𝑡2 + 4)

1

0

 𝑑𝑡

1

0

 

= 2𝜋∫ 𝑡2 ∙ 𝑡√9𝑡2 + 4

1

0

 𝑑𝑡 

(Let u = 9𝑡2 + 4 and 𝑡2 =
𝑢−4

9
  du = 18𝑡𝑑𝑡 →

1

18
𝒅𝒖 = 𝑡𝑑𝑡 when t = 0 → u = 4, when t = 1 → u = 13 

= 2𝜋∫ (
𝑢 − 4

9
)√𝑢 ∙

1

18
𝑑𝑢 =   

2𝜋

18 ∙ 9

13

4

∫ (𝑢 − 4)√𝑢

13

4

 𝑑𝑢 =  
𝜋

81
∫ (𝑢

3
2 − 4𝑢

1
2)𝑑𝑢

13

4

 

=
𝜋

81
[
2

5
𝑢
5
2 −

8

3
𝑢
3
2]
4

13

 = ⋯(𝑙𝑜𝑡𝑠 𝑜𝑓 𝑎𝑙𝑔𝑒𝑏𝑟𝑎) =  
𝝅

𝟏𝟐𝟏𝟓
(𝟒𝟗𝟒√𝟏𝟑 + 𝟏𝟐𝟖) 

 

Example:  Find the surface area generated by rotating the given curve about the y – axis. 

𝑥 = 𝑒𝑡 − 𝑡, 𝑦 = 4𝑒
𝑡
2, 0 ≤ 𝑡 ≤ 1 

𝑑𝑥

𝑑𝑡
= 𝑒𝑡 − 1,   

𝑑𝑦

𝑑𝑡
= 2𝑒

𝑡
2 

Since we are rotating about the y – axis the surface area formula is:  (because the x function is now the 

radius) 

𝑺 = ∫𝟐𝝅 ∙ 𝒙

𝜷

𝜶

√(
𝒅𝒙

𝒅𝒕
)
𝟐

+ (
𝒅𝒚

𝒅𝒕
)
𝟐

 𝒅𝒕 

𝑆 = ∫2𝜋(𝑒𝑡 − 𝑡)√(𝑒𝑡 − 1)2 + (2𝑒
𝑡
2)

2

 𝑑𝑡

1

0

   (𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑐𝑎𝑙)                               

= 2𝜋∫(𝑒𝑡 − 𝑡)√𝑒2𝑡 − 2𝑒𝑡 + 1 + 4𝑒𝑡𝑑𝑡 = 2𝜋∫(𝑒𝑡 − 𝑡)√(𝑒2𝑡 + 2𝑒𝑡 + 1)

1

0

1

0

 𝑑𝑡                     

= 2𝜋∫(𝑒𝑡 − 𝑡)

1

0

√(𝑒𝑡 + 1)2 𝑑𝑡 = 2𝜋∫(𝑒𝑡 − 𝑡)(𝑒𝑡 + 1)

1

0

𝑑𝑡 = 2𝜋∫(𝑒2𝑡 + 𝑒𝑡 − 𝑡𝑒𝑡 − 𝑡)𝑑𝑡

1

0

 

Now integrate each term.  First term use u – substitution, the third term use integration by parts. 

= 2𝜋 [
1

2
𝑒2𝑡 + 𝑒𝑡 − (𝑡 − 1)𝑒𝑡 −

1

2
𝑡2]

0

1

 

𝑺 = 𝝅(𝒆𝟐 + 𝟐𝒆 − 𝟔)                                          


